SM82物联网无线数传模块...
   SM5X系列工业级物联网无...
   SM570/0-~100mW工业级网...
   STR-15型大功率无线数据...
   50mW新国网标准采集器无...
 
物联网无线模块
RF无线抄表模块
RF无线收发器
RF无线掌上电脑
物联网无线数据采集卡
掌上无线点菜机
掌上无线抄表器
无线餐饮管理系统
 
首页 > 新闻中心 > 新闻中心
扩频技术的历史、现状及发展趋势综述
作者:none     07-8-3 9:21    浏览次数:5227
一、引言
  
  扩频技术(Spread Spectrum, SS)的历史可以追溯到20世纪50年代中期,但是直到80年代初,扩频技术仍然主要应用在军事通信和保密通信中。随着个人通信业务的发展以及全球定位系统的应用,到现在为止,使用扩频技术的用户已经超过一亿[1]。无线通信已经成为电信产业最大的部门之一,经过十年多的稳步发展,俨然是21世纪中最有发展潜力的领域[2]。扩频技术在未来无线系统中的应用也再次成为人们关注的重点。
  为了更好地把握扩频技术在无线通信中的应用,本文首先介绍扩频技术的基本情况,然后回顾扩频技术的历史,并对其研究现状进行讨论,最后结合无线通信系统的发展趋势,主要是第四代移动通信系统(4G),着重研究扩频技术的发展趋势及其在未来无线通信系统中的应用。
  
  二、扩频技术简介
  
  扩频通信系统具备3个主要特征:①载波是一种不可预测的,或称之为伪随机的宽带信号;②载波的带宽比调制数据的带宽要宽得多;③接收过程是通过将本地产生的宽带载波信号的复制信号与接收到的宽带信号相关来实现的。
  频谱扩展的方式主要有以下几种:直序扩频(DSSS)使用高速伪随机码对要传输的低速数据进行扩频调制;跳频系统则利用伪随机码控制载波频率在一个更宽的频带内变化;跳时则是数据的传输时隙是伪随机的;线性调频系统中的频率扩展则是一个线性变化的过程。几种方式组合的混合系统也经常得到应用。
  衡量扩频系统最重要的一个指标就是扩频增益,又称为处理增益。正是因为扩频系统本身具有的特征使其性能具有一系列的优势:①低截获概率;②抗干扰能力强;③高精度测距;④多址接入;⑤保密性强。也正是这些特性使其获得了广泛的应用。
  
  三、扩频技术的历史
  
  扩频通信技术最初是在军事抗干扰通信中发展起来的[3],后来又在移动通信中得到广泛的应用 [4],因此扩频技术的历史经历了两个发展阶段,而目前它在这两个领域仍占据重要的地位。
  
  1. 在军事通信中的应用
  
  扩频通信系统是在50年代中期产生的,其最初的应用包括军事抗干扰通信、导航系统、抗多径实验系统以及其它方面[5]。
  扩频技术的最初构想是在第二次世界大战期间形成的。在战争后期,干扰和抗干扰技术成为决定胜负的重要因素。战后得出了“最好的抗干扰措施就是好的工程设计和扩展工作频率”的结论。跳频通信的思路就是在这段时期出现的:如果对窄带信号使用编码的频率控制,则可以使其在任何时间占据宽频段中的任何一部分,这样敌人要进行干扰就必须维持很宽的频段。另一方面,直序扩频则起源于导航系统中高精度测距。
  真正实用的扩频通信系统是在50年代中期发展起来的。麻省理工学院林肯实验室开发的扩频通信系统F9C-A/Rake系统被公认为第一个成功的扩频通信系统,在该系统的研制过程中,首次提出了瑞克(RAKE)接收的概念并成功应用,该系统也是第一个真正实用的宽带通信系统。第一个跳频扩频通信系统BLADES也在这段时期研制成功,在该系统中第一次利用移位寄存序列实现纠错编码。在此期间,喷气实验室(JPL)在其空间任务中完成了伪码产生器的设计以及跟踪环路的设计。
  自从扩频通信的概念在50年代开始成熟以后,此后的二十多年扩频通信技术仍得到很大的发展,但都只是局部的发展,如硬件的改进和应用领域的拓展。而个人通信业务(PCS)的发展终于使扩频技术迎来了另一次大发展的机遇。
  
  2. 在民用通信中的应用
  
  一直到80年代初期,扩频通信的概念都只是在军事通信系统中得到应用,这种状况到了80年代中期才得到改变。美国联邦通信委员会(FCC)于1985年5月发布了一份关于将扩频技术应用到民用通信的报告[6]。从此,扩频通信技术获得了更加广阔的应用空间。
  扩频技术最初在无绳电话中获得成功应用,因为当时已经没有可用的频段供无绳电话使用,而扩频通信技术允许与其它通信系统共用频段,所以扩频技术在无绳电话的通信系统中获得了其在民用通信系统中应用的第一次成功经历。而真正使扩频通信技术成为当今通信领域研究热点的原因是码分多址(CDMA)的应用。
  90年代初,在第一代模拟蜂窝通信系统的基础上,出现了PCS研究的热潮。要实现PCS并考虑其长期发展,需要FCC为其分配100~200 MHz的带宽,而与频谱分配相关的一个重要技术因素就是多址技术。当时频谱资源的分配已经是非常拥挤,不存在还未分配且可用的一段宽达100 MHz的频谱资源。要为PCS分配可用的频段就只有2种方案:一是为PCS分配一段专用频谱,使正在使用该频谱的用户换到其它的频段;另一种办法就是让PCS与其它用户共享一段频谱[7]。采取第一种方案将要遇到巨大的政治和经济阻碍:当时只有政府使用的一些频段还比较宽松,因此只能是让政府用户换用其它频段来为PCS腾出频谱资源;同时换用频段意味着已有设备的射频部分需要改造。因此第二种方案成为合理的选择。
  扩频技术为共享频谱提供了可能。使用扩频技术能够实现码分多址,即在多用户通信系统中所有用户共享同一频段,但是通过给每个用户分配不同的扩频码实现多址通信。利用扩频码的自相关特性能够实现对给定用户信号的正确接收;将其他用户的信号看作干扰,利用扩频码的互相关特性,能够有效抑制用户之间的干扰。此外由于扩频用户具有类似白噪声的宽带特性,它对其它共享频段的传统用户的干扰也达到最小。由于采用CDMA技术能够实现与传统用户共享频谱,因此它也就成为PCS首选的多址方案。
  随着PCS以及蜂窝移动通信的发展,CDMA技术已经成为不可或缺的关键技术。扩频通信技术也在民用通信中找到更为广阔的应用空间,而关于CDMA技术的研究热潮也一直延续到现在。
  
  四、扩频技术的现状
  
  1. 扩频技术的研究现状
  
  扩频技术由于其本身具备的优良性能而得到广泛应用,到目前为止,其最主要的两个应用领域仍是军事抗干扰通信和移动通信系统,而跳频系统与直扩系统则分别是在这两个领域应用最多的扩频方式。一般而言,跳频系统主要在军事通信中对抗故意干扰,在卫星通信中也用于保密通信,而直扩系统则主要是一种民用技术。
  对跳频系统的分析,现在仍集中在其对抗各种干扰的性能方面,如对抗部分边带干扰[8]以及多频干扰[9]等。而直扩系统,即DS-CDMA系统,在移动通信系统中的应用则成为扩频技术的主流。欧洲的GSM标准和北美的以CDMA技术为基础的IS-95都在第二代移动通信系统(2G)的应用中取得了巨大的成功。而在目前所有建议的第三代移动通信系统(3G)标准中(除了EDGE)都采用了某种形式的CDMA。因此CDMA技术成为目前扩频技术中研究最多的对象,其中又以码捕获技术和多用户检测(MUD)技术代表了目前扩频技术研究的现状。
  
  2. 码捕获
  
  同步的实现是直扩系统中一个关键问题。只有在接收机将本地产生的伪码和接收信号中调制信息的伪码实现同步以后,才有可能实现直序扩频通信的各种优点。同步过程分为两步来实现:首先是捕获阶段,实现对接收信号中伪码的粗跟踪;然后是跟踪阶段,实现对伪码的精确跟踪。目前的研究主要集中在码捕获过程。
  目前对码捕获的研究主要集中在对周期较长的码实现捕获的问题,也就是快速捕获的问题。以前采用的主要是串行捕获方法,这种方案实现简单,但捕获速度不能满足要求。而现在大规模集成电路的应用使并行捕获方案成为可能,但系统的复杂度很高,因此研究的目标就是实现码捕获时间性能和系统复杂度之间的折衷。在串行捕获方案中,双停顿时间搜索法和序贯检测法都是缩短捕获时间的有效方法,利用一些新的搜索算法进一步改进这些系统的性能成为研究的热点[10,11]。此外以前主要研究的是高斯信道下的捕获性能,现在则考虑到非高斯信道下的捕获性能[12],以及在有频偏等影响条件下捕获性能。
  
  3. 多用户检测
  
  CDMA系统容量受到来自其他用户的多址干扰的限制,多用户检测能够利用这些多址干扰来改善接收机的性能,因此是一种提高系统容量的有效方法。传统的CDMA接收机是由一系列单用户检测器组成,每个检测器都是与特定扩频码对应的相关器,它并没有考虑多址干扰的结构,而是把来自其它用户的干扰当成加性噪声,因此当用户数量增加时,其性能急剧下降。通过对所有用户的联合译码可以极大地改善CDMA系统的性能。但是最优的多用户接收机,其复杂度随用户数量成指数增长,因此在实际通信系统中几乎不可能实现。这样寻找在性能和复杂度之间折中的次最优多用户检测器成为研究的热点。
  目前研究的次最优多用户检测器主要可分为两大类:线性检测器和反馈检测器。前者包括解相关检测器、最小均方误差序列检测器等;后者则包括多级检测器、判决反馈检测器、顺序干扰撤销和并行干扰撤销检测器等。考虑信道编码的多用户接收机又可以分为非迭代接收机和迭代接收机[13]。这些检测器的实现都需要知道预期用户的扩频码、定时信息以及信道冲击响应,有时还需要知道多用户干扰。这些信息可以通过发送导频序列获得,但使用导频序列就降低了系统的频谱利用效率,因此不使用导频序列的多用户检测方法,又称为盲多用户检测器,也正在得到深入的研究[14]。
  
  五、扩频技术的展望
  
  1. 扩频技术的发展趋势
  
  从扩频技术的历史可以看出,每一次技术上的大发展都是由巨大的需求驱动的。军事通信抗干扰的驱动以及个人通信业务的驱动使得扩频技术的抗干扰性能和码分多址能力得到最大限度的挖掘。展望未来,第四代移动通信系统(4G)的驱动无疑会使扩频技术传输高速数据的能力得到更大的拓展。
  3G设计的目标主要是支持多媒体业务的高速数据传输,因此其研究主要集中在新标准和新硬件的开发。而对于3G以后的发展,不同的研究者有不同的观点。
来源:
文字友情链接
中国计算机报 中国无线局域网 中国计算机用户 中国信息化 中国科学器材网 世界经理人 eNet硅谷动力
21CN下载频道 华军软件园 今日电子 电子产品世界 华强电子世界 21IC中国电子网 通信世界
中国电子资源网 中国IC网 中国节能环保网 搜狐 新浪网
版权所有:上海桑博电子科技有限公司 电话:021-50807785,50273226传真:50273226 沪ICP备14040966号-1